

Enhanced Security Notions for Dedicated-Key Hash Functions: Definitions and Relationships

Mohammad-Reza Reyhanitabar, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research

School of Computer Science and Software Engineering

University of Wollongong

Australia

Outline:

Introduction

- Two Settings for Hash Functions: Keyless and Dedicated-key
- The Seven Security Notions (Rogaway and Shrimpton, FSE 2004):
 Coll, Sec, aSec, eSec (TCR or UOWHF), Pre, aPre, ePre
- Enhanced Target Collision Resistance (Halevi and Krawczyk, Crypto 2006)
- Enhanced Collision Resistance (Yasuda, Asiacrypt 2008)
- Our Contributions
 - A New Set of Enhanced Properties: Definitions
 - A Full Picture of the Relationships (Implications and Separations) among the Properties
- Conclusion

Two Settings for Hash Functions

1. Keyless Setting: $H: \mathcal{M} \to \mathcal{C}$

• Example: $SHA-1: \{0,1\}^{<2^{64}} \to \{0,1\}^{160}$

- 2. Dedicated-key Setting (Function Family): $\mathcal{H} : \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ A member of the family is chosen by a key (index or salt) $K \in \mathcal{K}$ and is a function $H \triangleq \mathcal{H}_K : \mathcal{M} \to \mathcal{C}$
 - Some examples:
 - ★ CRHF family (Damgård, CRYPTO 1987)
 - \star UOWHF family (Naor and Yung, STOC 1989)
 - \bigstar VSH (Contini et al., EUROCRYPT 2006)
 - ★ Some SHA-3 Proposals: e.g. Blake (Aumasson et al.), ECHO (Benadjila et al.), SHAvite-3 (Dunkelman-Biham), Skein (Ferguson et al.)

The Seven Security Notions

Rogaway and Shrimpton investigated seven variants for three basic security notions of a dedicated-key hash function at FSE 2004:

- Collision Resistance (Coll)
- Second-Preimage Resistance
 - <mark>Sec</mark>
 - aSec
 - eSec
- Preimage Resistance
 - Pre
 - aPre
 - ePre

The Seven Security Notions

Rogaway and Shrimpton investigated seven variants for three basic security notions of a dedicated-key hash function at FSE 2004:

- Collision Resistance (Coll) $\{\mathbf{K} \stackrel{\$}{\leftarrow} \mathcal{K}; \ (\mathbf{M}, \mathbf{M}') \stackrel{\$}{\leftarrow} \mathbf{A}(\mathbf{K}): \ \mathbf{M} \neq \mathbf{M}' \ \land \ \mathcal{H}_{\mathbf{K}}(\mathbf{M}) = \mathcal{H}_{\mathbf{K}}(\mathbf{M}') \}$
- Second-Preimage Resistance
 - $\quad \textbf{Sec} \qquad \qquad \left\{ \mathbf{K} \xleftarrow{\$} \mathcal{K}; \ \mathbf{M} \xleftarrow{\$} \{\mathbf{0}, \mathbf{1}\}^{\delta}; \ \mathbf{M}' \xleftarrow{\$} \mathbf{A}(\mathbf{K}, \mathbf{M}): \ \mathbf{M} \neq \mathbf{M}' \ \land \ \mathcal{H}_{\mathbf{K}}(\mathbf{M}) = \mathcal{H}_{\mathbf{K}}(\mathbf{M}') \right\}$
 - $\quad \mathbf{aSec} \ \left\{ (\mathbf{K}, \mathbf{State}) \stackrel{\$}{\leftarrow} \mathbf{A_1}(); \ \mathbf{M} \stackrel{\$}{\leftarrow} \left\{ \mathbf{0}, \mathbf{1} \right\}^{\delta}; \ \mathbf{M}' \stackrel{\$}{\leftarrow} \mathbf{A_2}(\mathbf{M}, \mathbf{State}): \ \mathbf{M} \neq \mathbf{M}' \ \land \ \mathcal{H}_{\mathbf{K}}(\mathbf{M}) = \mathcal{H}_{\mathbf{K}}(\mathbf{M}') \right\}$
 - $\quad \text{eSec} \qquad \quad \left\{ (\mathbf{M}, \mathbf{State}) \stackrel{\$}{\leftarrow} \mathbf{A_1}(); \ \mathbf{K} \stackrel{\$}{\leftarrow} \mathcal{K}; \ \mathbf{M'} \stackrel{\$}{\leftarrow} \mathbf{A_2}(\mathbf{K}, \mathbf{State}): \ \mathbf{M} \neq \mathbf{M'} \ \land \ \mathcal{H}_{\mathbf{K}}(\mathbf{M}) = \mathcal{H}_{\mathbf{K}}(\mathbf{M'}) \right\}$
- Preimage Resistance
 - $\operatorname{Pre} \left\{ \mathbf{K} \stackrel{\$}{\leftarrow} \mathcal{K}; \mathbf{M} \stackrel{\$}{\leftarrow} \{\mathbf{0}, \mathbf{1}\}^{\delta}; \mathbf{Y} \leftarrow \mathcal{H}_{\mathbf{K}}(\mathbf{M}); \ \mathbf{M}' \stackrel{\$}{\leftarrow} \mathbf{A}(\mathbf{K}, \mathbf{Y}): \ \mathcal{H}_{\mathbf{K}}(\mathbf{M}') = \mathbf{Y} \right\}$

$$- \quad \text{aPre} \quad \left\{ (\mathbf{K}, \mathbf{State}) \stackrel{\$}{\leftarrow} \mathbf{A_1}(); \ \mathbf{M} \stackrel{\$}{\leftarrow} \{\mathbf{0}, \mathbf{1}\}^{\delta}; \ \mathbf{Y} \leftarrow \mathcal{H}_{\mathbf{K}}(\mathbf{M}); \ \mathbf{M}' \stackrel{\$}{\leftarrow} \mathbf{A_2}(\mathbf{Y}, \mathbf{State}) : \mathcal{H}_{\mathbf{K}}(\mathbf{M}') = \mathbf{Y} \right\}$$

 $- ePre \left\{ (\mathbf{Y}, \mathbf{State}) \stackrel{\$}{\leftarrow} \mathbf{A_1}(); \ \mathbf{K} \stackrel{\$}{\leftarrow} \mathcal{K}; \ \mathbf{M'} \stackrel{\$}{\leftarrow} \mathbf{A_2}(\mathbf{K}, \mathbf{State}) : \mathcal{H}_{\mathbf{K}}(\mathbf{M'}) = \mathbf{Y} \right\}$

Relationships among the Seven Notions

Rogaway and Shrimpton, FSE 2004 (revised ePrint version: Report 2004/035)

Enhanced Target Collision Resistance (eTCR)

Definition (Halevi and Krawczyk, Crypto 2006)

$$\operatorname{Adv}_{\mathcal{H}}^{eTCR}(A) = \Pr \left\{ \begin{array}{l} (M, State) \stackrel{\$}{\leftarrow} A_1(); \\ K \stackrel{\$}{\leftarrow} \mathcal{K}; \\ (K', M') \stackrel{\$}{\leftarrow} A_2(K, State); \end{array} : (K, M) \neq (K', M') \land \mathcal{H}_K(M) = \mathcal{H}_{K'}(M') \right.$$

Coll

Sec

Pre

aSec

aPre

eTCR

eSec

ePre

8

Enhanced Target Collision Resistance (eTCR)

Definition (Halevi and Krawczyk, Crypto 2006)

$$\operatorname{Adv}_{\mathcal{H}}^{e^{TCR}}(A) = \Pr \begin{cases} (M, State) \stackrel{\$}{\leftarrow} A_1(); \\ K \stackrel{\$}{\leftarrow} \mathcal{K}; \\ (K', M') \stackrel{\$}{\leftarrow} A_2(K, State); \end{cases} : (K, M) \neq (K', M') \land \mathcal{H}_K(M) = \mathcal{H}_{K'}(M')$$

Relationships (Reyhanitabar, Susilo, and Mu, FSE 2009 and ePrint report 2009/506)

Enhanced Collision Resistance (eColl)

Definition (Yasuda, Asiacrypt 2008)

 $\operatorname{Adv}_{\mathcal{H}}^{eColl}(A) = \Pr\left\{ K \stackrel{\$}{\leftarrow} \mathcal{K}; (\mathbf{K'}, M', M) \stackrel{\$}{\leftarrow} A_2(K, State) : (K, M) \neq (K', M') \land \mathcal{H}_K(M) = \mathcal{H}_{K'}(M') \right\}$

Some of the relationships between eColl and other properties, especially in the complexity-theoretic sense, were considered by Yasuda at Asiacrypt 2008.

Enhanced (Strengthened) Variants of the other Properties

- 1. Strengthened "Coll": s-Coll (= "eColl")
- 2. Strengthened "Sec": s-Sec
- 3. Strengthened "aSec": s-aSec
- 4. Strengthened "eSec": s-eSec (= "eTCR")
- 5. Strengthened "Pre": s-Pre
- 6. Strengthened "aPre": s-aPre
- 7. Strengthened "ePre"?

Definitions

The s-XXX property, for $XXX \in \{Coll, Sec, aSec, eSec, Pre, aPre\}$ is defined by modifying the game defining the XXX property s.t. the <u>adversary gets to choose a</u> <u>second key</u>, possibly different from the first key, and <u>the success event is defined accordingly</u>.

Definitions

The s-XXX property, for $XXX \in \{Coll, Sec, aSec, eSec, Pre, aPre\}$ is defined by modifying the game defining the XXX property s.t. the <u>adversary gets to choose a</u> <u>second key</u>, possibly different from the first key, and <u>the success event is defined accordingly</u>.

$$\operatorname{Adv}_{H}^{\mathfrak{s}\operatorname{-}\operatorname{Sec}[\delta]}(A) = \Pr\left[\begin{array}{cc} K \stackrel{\$}{\leftarrow} \mathcal{K}; M \stackrel{\$}{\leftarrow} \{0,1\}^{\delta}; \\ K', M' \stackrel{\$}{\leftarrow} A(K, M) & : (K, M) \neq (K', M') \land H_{K}(M) = H_{K'}(M') \end{array}\right]$$

$$\operatorname{Adv}_{H}^{\operatorname{s-aSec}[\delta]}(A) = \Pr \begin{bmatrix} (K, State) \stackrel{\$}{\leftarrow} A_{1}(); \\ M \stackrel{\$}{\leftarrow} \{0, 1\}^{\delta}; \\ K', M' \stackrel{\$}{\leftarrow} A_{2}(M, State) & : (K, M) \neq (K', M') \land H_{K}(M) = H_{K'}(M') \end{bmatrix}$$

$$\operatorname{Adv}_{H}^{\$-\operatorname{Pre}[\delta]}(A) = \operatorname{Pr}\left[\begin{array}{cc} K \stackrel{\$}{\leftarrow} \mathcal{K}; M \stackrel{\$}{\leftarrow} \{0,1\}^{\delta}; Y \leftarrow H_{K}(M); \\ K', M' \stackrel{\$}{\leftarrow} A(K, Y) & : \quad H_{K'}(M') = Y \end{array}\right]$$

$$\operatorname{Adv}_{H}^{\operatorname{s-aPre}[\delta]}(A) = \Pr \begin{bmatrix} (K, State) \stackrel{\$}{\leftarrow} A_{1}(); \\ M \stackrel{\$}{\leftarrow} \{0, 1\}^{\delta}; Y \leftarrow H_{K}(M); \\ K', M' \stackrel{\$}{\leftarrow} A_{2}(Y, State) & : H_{K'}(M') = Y \end{bmatrix}$$

Relationships among the Thirteen Security Notions

Relationships among the Thirteen Security Notions

		s-Coll (eColl)		s-Sec	$e \mid s-aSec$	e s-eSe	s-eSec $(eTCR)$		s-Pre	s-aPre		
s-Coll (eColl)		=				-/-		[27]		•	· -/->	_
s-Sec		-/ >			=	-/->		-/ >		•	· _/•	_
s-aSec		-/ >				. =		-/ >				_
s-eSec (eTCR)		-/ >				-/-		=		•	· -/->	_
s-Pre		-/ >			_∕►	-/->		-/ >			_ / ►	_
s-aPre		-/ -			-/ -			_ / ►			=	_
		Coll		Sec		aSec	eSec (eSec (TCR)		Pre	aPre	ePre
s-Coll (eColl)				-		-/ >	_			- ►	-/ >	►
s-Sec		-/ >				-/ >	-	-/ >		- ►	-/ >	-/ ->
s-aSec		_/ >					-	-/ >		- ►	>	-∕►
s-eSec (eTCR)		→ [20]		→ [21]		≁ ►[21]	→ [21]			► [21]	→ [21]	→ [21]
s-Pre		/ ►		-/ >		-∕►	7	≁ ►		-	-∕►	-∕►
s-aPre		-/ >		-∕►		→		→		-		≁ ►
	s-0	Coll	s-Sec	s-	aSec	s-eSec (eTCR)	s-Pre	s-	aPre		
Coll		-∕►	-/ >		-∕►	-/ >	[20]	-/ >		-/ >		
Sec		≁►	-∕►		≁►	-/+	[21]	_ / ►		-∕►		
aSec		-∕►	-∕►		-∕►	-/->	[21]	_ / ►		-∕►		
eSec (TCR)		≁►	-∕►		-∕►	-∕►	[21]	_ / ►		-∕►		
Pre		≁►	-∕►		≁►	-/ >	[21]	_ / ►		-∕►		
aPre		≁►	-∕►		≁►	≁ ►	[21]	_ / ►		-∕►		
ePre		≁►	-/ >		≁►	-/->	[21]	_ / ►		-∕►		

[20, 21] Reyhanitabar, Susilo, Mu, FSE 2009 and ePrint report 2009/506

[27] Yasuda, Asiacrypt 2008

Notions of Implications

Let xxx and yyy be two security notions defined for an *arbitrary* hash function $H: \mathcal{K} \times \mathcal{M} \to \{0,1\}^n$, and fix δ such that $\{0,1\}^{\delta} \subseteq \mathcal{M}$.

★ Security-Preserving Implications (xxx → yyy): $\operatorname{Adv}_{H}^{yyy}(t') \leq c\operatorname{Adv}_{H}^{xxx}(t)$, for all such hash functions H, where $t' = t - c'T_{H,\delta}$ and c, c' are constants.

★ Provisional Implications (xxx --→ yyy): We establish one of the following two concrete bounds: 1. $\operatorname{Adv}_{H}^{yyy}(t') \leq c\operatorname{Adv}_{H}^{xxx}(t) + \mu(n, k, \delta)$ 2. $\operatorname{Adv}_{H}^{yyy}(t') \leq c\operatorname{Adv}_{H}^{xxx}(t) + c'\sqrt{\operatorname{Adv}_{H}^{xxx}(t)} + \mu(n, k, \delta)$

, where $t' = t - c'T_{H,\delta}$; c, c' are some non-negative constants, and $\mu(n, k, \delta)$ depends on the hash function parameters n, k and δ (e.g. $\mu(n, k, \delta) = 2^{n-\delta}$).

Example: s-Coll ------> ePre

Theorem. For any $H : \mathcal{K} \times \mathcal{M} \to \{0,1\}^n$: $\operatorname{Adv}_H^{ePre}(t') \leq \sqrt{\operatorname{Adv}_H^{s-Coll}(t) + \frac{1}{|\mathcal{K}|}}$, where t' = t - c, for some small constant c.

Notations:

$$\star y \stackrel{\$}{\leftarrow} A(x_1, \cdots, x_n)$$
 means: $R \stackrel{\$}{\leftarrow} \{0, 1\}^{r(|x|)}$ and $y = A(x_1, \cdots, x_n; R)$

 \star Let Verify(M, K, Y) be a deterministic predicate defined as follows:

$$\operatorname{Verify}(M, K, Y) = \begin{cases} 1 & \text{if } H_K(M) = Y \\ 0 & \text{otherwise} \end{cases}$$

<u>Proof</u>

ePre Experiment $R \stackrel{\$}{\leftarrow} \{0,1\}^r$; $(Y, State) = A(\emptyset; R)$; $K \stackrel{\$}{\leftarrow} \mathcal{K}$; M = A(K, State; R); d = Verify(M, K, Y); Return d

Reset Experiment: $R \stackrel{\$}{\leftarrow} \{0,1\}^r$; $(Y, State) = A(\emptyset; R)$; $K1 \stackrel{\$}{\leftarrow} \mathcal{K}$; M1 = A(K1, State; R); $d_1 = \text{Verify}(M1, K1, Y)$; $K2 \stackrel{\$}{\leftarrow} \mathcal{K}$; M2 = A(K2, State; R); $d_2 = \text{Verify}(M2, K2, Y)$; If $(d_1 = 1 \land d_2 = 1 \land K1 \neq K2)$ then **return 1** else **return 0**

Proposition. Let p denote the probability that the ePre Experiment returns 1 and q be the probability that the Reset Experiment returns 1; we have $p \leq \sqrt{q} + \frac{1}{|\mathcal{K}|}$.

Separations

We use $xxx \rightarrow yyy$ to show that the notion xxx does not imply the notion yyy, in the "conventional sense".

Assuming that there exists a function $H : \{0,1\}^k \times \{0,1\}^m \to \{0,1\}^n$ that is $(t,\epsilon) - xxx$ secure, we construct (as a counterexample) a function $G : \{0,1\}^k \times \{0,1\}^m \to \{0,1\}^n$ which is also $(t',\epsilon') - xxx$ secure, but completely insecure in yyy sense; *i.e.* $\operatorname{Adv}_{G}^{yyy}(c'') \approx 1$, where c'' is a small constant.

▶ In our separation results, we show counterexamples for which either $\operatorname{Adv}_{G}^{yyy}(c'') = 1$, or $\operatorname{Adv}_{G}^{yyy}(c'') = 1 - 2^{-m}$ which for any typical value of m becomes ≈ 1 .

Counterexamples used in our Separations

$$\begin{aligned} G1_{K}(M) &= \begin{cases} C^{*} & \text{if } K = K^{*} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G2_{K}(M) &= \begin{cases} K_{1...n} & \text{if } val(M) = val(K) \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G3_{K}(M) &= \begin{cases} H_{K}(0^{m-k}||K) & \text{if } M = 1^{m-k}||K \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G4_{K}(M) &= \begin{cases} C^{*} & \text{if } M = 0^{m} \lor M = 1^{m} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G5_{K}(M) &= \begin{cases} C^{*} & \text{if } M = 0^{m} \lor M = 1^{m} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G5_{K}(M) &= \begin{cases} C^{*} & \text{if } M = M^{*} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G6_{K}(M) &= \begin{cases} K_{1...n} & \text{if } val(M) = val(K) \\ H_{K}(\langle val(K) \rangle_{m}) & \text{if } val(M) \neq val(K) \land H_{K}(M) = K_{1...n} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G8_{K}(M) &= \begin{cases} K_{1...n} & \text{if } M = M^{*} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G9_{K}(M) &= \begin{cases} K_{1...n} & \text{if } M = M^{*} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G9_{K}(M) &= \begin{cases} K_{1...n} & \text{if } M = M^{*} \\ H_{K}(M) & \text{otherwise} \end{cases} \\ G9_{K}(M) &= \begin{cases} K_{1...n} & \text{if } M = M^{*} \\ H_{K}(M) & \text{otherwise} \end{cases} \end{cases} \end{aligned}$$

19

Assume that we have a hash function $H : \{0,1\}^k \times \{0,1\}^m \to \{0,1\}^n$, with $m > k \ge n$, which is $(t, \epsilon) - eTCR$.

The hash function $G3: \{0,1\}^k \times \{0,1\}^m \to \{0,1\}^n$ is $(t',\epsilon') - eTCR$, where t' = t - c, $\epsilon' = \epsilon + 2^{-k+1}$, but it is completely insecure in the s-Coll sense, i.e. $\operatorname{Adv}_{G3}^{s-Coll}(c') = 1$.

 $G3_{K}(M) = \begin{cases} H_{K}(0^{m-k}||K) & \text{if } M = 1^{m-k}||K \\ H_{K}(M) & \text{otherwise} \end{cases}$

Centre for Computer and Information Security Research

